- 4 Angeles, E, Folting, K., Grieco, P A, Huffman, J C, Miranda, R and Salmón, M. (1982) Phytochemistry 21, 1804
- 5 Salmón, M, Ortega, A, García de la Mora, G and Angeles, E (1983) Phytochemistry 22, 1512
- 6 Ortega, A, Martínez, R and García, C L (1980) Rev Latinoam Quím 11, 45
- 7 Bohlmann, F, Zdero, C and Schoneweiss, S (1976) Chem Ber 109, 3366
- 8 Manville, J F and Bock, K (1977) Org Magn Reson 9, 596
- 9 Cerny, V, Dolejs, L, Labler, L, Sorm, J and Slama, K (1967) Tetrahedron Letters 1053
- 10 Bohlmann, F, Zdero, C, King, R M and Robinson, H (1982) Phytochemistry 21, 2021
- 11 Bohlmann, F, Suwita, A, Natu, A A, Czerson, H and Suwita, A (1977) Chem Ber 110, 3572
- 12 Bohlmann, F and Zdero, C (1978) Phytochemistry 17, 2032

Phytochemistry, Vol 23, No 1, pp 188-190, 1984 Printed in Great Britain 0031-9422/84 \$3 00 + 0 00 © 1984 Pergamon Press Ltd

GUAIANE SESQUITERPENES FROM MAGNOLIA WATSONII

KAZUO ITO, TOSHIYUKI IIDA and TOSHIRO KOBAYASHI

Faculty of Pharmacy, Meijo University, Yagoto, Tempaku, Nagoya 468, Japan

(Received 29 April 1983)

Key Word Index—Magnolia watsonii, Magnoliaceae, sesquiterpenes, dehydrocostuslactone, watsonol B, 15-acetoxycostunolide, neolignans, obovatol, aporphine alkaloids

Abstract—The leaves and the trunk barks of Magnolia watsonu afforded two biosynthetic intermediates of dehydrocostuslactone (watsonol A and watsonol B) along with the neolignans, magnolol, honokiol and obovatol, and the aporphine alkaloids, liriodenine and asimilobine

In a recent chemotaxonomical investigation of the sesquiterpenes and the neolignans of magnoliaceous plants [1-6], it was found that the chloroform extracts of Magnolia watsonii Hook. fil contained two biosynthetic intermediates of dehydrocostuslactone (11), named watsonol A (12) and watsonol B (13). We now wish to report on the characterization of these new guaiane sesquiterpenes

The chloroform extracts of the fresh leaves and the trunk bark of M watsonn afforded three guaiane sesquiterpenes, the major one of which was identified as dehydrocostuslactone (11) [7, 8] The second sesquiterpene, watsonol A, mp 65-67°, C₁₅H₂₂O₂ (M⁺ 234), was obtained as a crystalline substance Its IR spectrum (CHCl₃) showed bands assignable to a hydroxyl group $(3430 \,\mathrm{cm}^{-1})$, and a double bond $(1640 \,\mathrm{cm}^{-1})$ The ¹H NMR spectrum (CDCl₃) resembled that of dehydrocostustactone (11), except for the presence of signals due to a hydroxymethylene group ($\delta 406$) in place of the γ butyrolactone function of 11 Acetylation of watsonol A with acetic anhydride and pyridine afforded a diacetate, which showed two acetoxyl methyl signals at $\delta 1$ 87 and 206 in its ¹H NMR spectrum In addition, the ¹H NMR spectrum exhibited signals typical of three terminal methylene double bonds (1H, \hat{d} , J = 2 Hz, $\delta 4$ 73, 1H, s (br), $\delta 482$, 1H, s, $\delta 494$, 1H, s, $\delta 507$, 2H, s, $\delta 511$) at C-15, C-14 and C-13, and a 1H as a triplet at $\delta 3\ 27\ (J=9\ Hz)$ for the proton attached to the carbon bearing the hydroxyl group at C-6 The latter signal shows the *trans*-diaxial disposition of the protons at C-5 (α), C-6 (β) and C-7 (α), as in dehydrocostuslactone (11)

On Jones oxidation of watsonol A, the oxidation product was obtained The structure of this compound was in agreement with dehydrocostulactone (11) (IR, MS and ¹H NMR) Therefore, the stereostructure of watsonol A is confirmed to be 12

The third guaiane sesquiterpene, watsonol B, $C_{17}H_{24}O_3$ (M⁺ 276), was obtained as an oil Its IR spectrum contained bands assignable to a hydroxyl group (3530 cm⁻¹), an acetoxyl group (1725 cm⁻¹), and a double bond (1640 cm⁻¹) The ¹H NMR spectrum was superimposable on that of watsonol A (12), except for the presence of a signal due to an acetoxyl methyl group

Watsonol B was acetylated with acetic anhydride and pyridine to give an acetate, which was identical with a diacetate of watsonol A Thus, the structure of watsonol B is elucidated as 13 Besides the three guaiane sesquiterpenes, the germacranolide sesquiterpenes, costunolide (9) and 15-acetoxycostunolide (10) [9], and the eudesman sesquiterpenes, α -eudesmol (6), β -eudesmol (7) and cryptomeridiol (8) [10] were isolated and characterized from the chloroform extracts of the fresh leaves and the trunk

Short Reports 189

bark of this plant Furthermore, three phenolic neolignans, magnolol (3), $h\bar{o}nokiol$ (4) [10] and obovatol (5) [3], and two aporphine alkaloids, liriodenine (1) and asimilobine (2) [11] were isolated from the trunk bark of this plant as well as from M obovata Thunb

EXPERIMENTAL

Mps uncorr, ¹H NMR (100 MHz) and ¹³C NMR (25 MHz) CDCl₃, int standard TMS, MS (70 eV) direct insertion, IR CHCl₃, UV and CD MeOH CC silica gel 60 (70-230 mesh),

TLC silica gel F-254 (0 25 mm) Spots were detected on TLC in UV light (254 nm) after spraying with 10% H₂SO₄ and then heating at 100°

13 OAc

Extraction and separation of compounds The MeOH extracts of fresh leaves (15 kg) and trunk bark (35 kg) of M watsonii collected in Sept 1982 in the Yawase district, Inazawa, Aichi prefecture, were separated into n-hexane and CHCl₃-soluble fractions respectively. The basic fraction from the CHCl₃ extract (trunk bark) (48 g) was chromatographed over Brockmann Al₂O₃ (Standard II-III) (CHCl₃) to give liriodenine (1, 38 mg) and asimilobine (2, 54 mg). The neutral fraction (leaf) (15 g) was

chromatographed over a column of silica gel (120 g) using C_6H_6 as eluent to afford dehydrocostuslactone (11, 40 mg), watsonol B (13, 107 mg), watsonol A (12, 10 mg) and 15-acetoxycostunolide (10, 88 mg) The neutral fraction (trunk bark) (62 g) was chromatographed over a column of silica gel (500 g) using C_6H_6 with gradually increasing proportions of EtOAc as eluent The first fraction (C_6H_6) gave costunolide (9, 44 mg), dehydrocostuslactone (11, 125 mg), 15-acetoxycostunolide (10, 78 mg), α -eudesmol (6, 8 mg), β -eudesmol (7, 10 mg), cryptomeridiol (8, 27 mg), obovatol (5, 15 g), magnolol (3, 187 mg) and honokiol (4, 300 mg) The second fraction (C_6H_6 -EtOAc, 5 1) gave watsonol B (13, 107 mg) and watsonol A (12, 89 mg)

Dehydrocostuslactone (11) Colourless oil IR $v_{\text{max}}^{\text{CHCl}_3}$ cm $^{-1}$ 1755, 1640, 1000, UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (ε) 206 (8168), MS m/z 230 [M] $^+$ (C_{1.5}H_{1.8}O₂), CD (c 0 013, MeOH) [θ]₂₉₀ 0, [θ]₂₆₅ $^-$ 708, [θ]₂₂₁ $^-$ 14154, [θ]₂₁₁ 0, 1 H NMR δ3 94 (1H, t, J = 10 Hz, H-6), 482 (1H, s, H-14), 488 (1H, s, H-14), 5 04 (1H, d, J = 2 Hz, H-15), 5 25 (1H, d, J = 2 Hz, H-15), 5 48 (1H, d, J = 3 Hz, H-13), 6 29 (1H, d, J = 3 Hz, H-13), 13 C NMR δ30 3, 30 9 (each t, C-2 or C-3), 32 6, 36 3 (each t, C-8 or C-9), 45 1, 52 0 (each d, C-1 or C-5), 47 6 (d, C-7), 85 2 (d, C-6), 109 5, 112 6 (each t, C-14 or C-15), 120 0 (t, C-13), 139 8 (t, C-11), 149 2, 151 3 (each t, C-4 or C-10), 170 1 (t, C-12)

Watsonol B (13) Colourless oil IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹ 3530, 1725, 1640, MS m/z 276 [M]⁺ (C₁₇H₂₄O₃), 258, 216, 198, ¹H NMR δ 2 08 (3H, s, OCOMe), 3 18 (1H, t, J = 9 Hz, H-6), 4 58 (2H, s, H-12), 4 69 (1H, d, J = 2 Hz, H-15), 4 78 (1H, s (br), H-15), 4 92 (1H, s, H-14), 5 03 (1H, s, H-14), 5 06 (2H, s, H-13), ¹³C NMR δ 21 0 (q, OCOMe), 28 8, 30 7 (each t, C-8 or C-9), 35 3, 35 9 (each t, C-2 or C-3), 47 4 (d, C-1), 53 6, 55 4 (each d, C-5 or C-7), 65 9 (t, C-12), 68 8 (d, C-6), 110 6, 111 2, 111 9 (each t, C-13 or C-14 or C-15), 147 5 (s, C-11), 152 2, 153 0 (each s, C-4 or C-10), 170 7 (s, OCOMe)

Watsonol A (12) Colourless needles, mp 65-67°

IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹ 3600, 3430, 1640, MS m/z 234 [M]⁺ (C₁₅H₂₂O₂), 216, 198, ¹H NMR δ 3 27 (1H, t, J = 9 Hz, H-6), 4 06 (2H, s, H-12), 4 73 (1H, d, J = 2 Hz, H-15), 4 82 (1H, s (br), H-15), 4 94 (1H, s, H-14), 5 07 (1H, s, H-14), 5 11 (2H, s, H-13)

Jones oxidation of watsonol A To a soln of 12 (5 mg) in Me₂CO (2 ml), Jones reagent (8 N CrO₃ soln) (15 mg) was added at 0° After 1 min, H₂O was added and the mixture extracted with CHCl₃ Evaporation of CHCl₃ gave a gum, which was chromatographed on Al₂O₃ (C₆H₆) to give pure dehydrocostuslactone (11, 2 mg)

Diacetate of watsonol A Colourless oil IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹ 1725, 1640, 900, MS m/z 318 [M]⁺ (C₁₉H₂₆O₄), 258, 198, ¹H NMR δ 1 87 (3H, s, OAc-6), 2 06 (3H, s, OAc-12), 4 47 (2H, s, H-12), 4 72 (1H, t, J = 9 Hz, H-6), 4 76-5 04 (6H, m, H-13, H-14, H-15)

REFERENCES

- 1 Iida, T and Ito, K (1982) Phytochemistry 21, 701
- 2 Iida, T, Nakano, M and Ito, K (1982) Phytochemistry 21, 673
- 3 Ito, K, Iida, T, Ichino, K, Tsunezuka, M, Hattori, M and Namba, T (1982) Chem Pharm Bull 30, 3347
- 4 Iida, T, Ichino, K and Ito, K (1982) Phytochemistry 21,
- 5 Iida, T, Noro, Y and Ito, K (1983) Phytochemistry 22, 211
- 6 Iida, T and Ito, K (1983) Phytochemistry 22, 763
- 7 Mathur, SB, Hiremath, SV, Kulkarni, GH, Kelkar, GR and Bhattacharyya, SC (1965) Tetrahedron 21, 3575
- 8 Bohlmann, F and Zdero, C (1982) Phytochemistry 21, 647
- 9 Tada, H, Fujioka, R and Takayama, Y (1982) Phytochemistry 21, 458
- 10 Fujita, M, Itokawa, H and Sashida, Y (1973) Yakugaku Zasshi 93, 415 and 422
- 11 Ito, K and Asai, S (1974) Yakugaku Zasshi 94, 729